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Abstract

This paper describes Project Historian, a software system that com-
bines various natural language processing techniques to automatically
generate news event timelines on-demand from a news story archive.
It is designed for working journalists with the goal of making it easy
to add context to upcoming and evolving news stories.

Keywords: natural language processing, newsroom automation, un-
supervised learning, topic detection
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Chapter 1.

Introduction

Journalism often requires reporters to shift to new beats, or cover big events as
they unfold, yet to impress on the reader why the event matters, sufficient context
needs to be presented as part of the package. However, researching this context is
often time-consuming and difficult, and few publications have a system in place to
assist journalists on deadline. Likewise, readers do not have the time to trawl through
weeks of archives looking for background information.

This is where Project Historian comes in. It is a tool aimed at journalists that
automatically creates a timeline of related events from news archives, based on a
user’s search query. The timeline can then be used as background research for the
journalist as they write a news story, or even edited and embedded directly in a story
for the reader’s reference.

1.1. Providing Context to News Stories

Project Historian serves the dual purpose of saving time for journalists and making
news coverage more relevant to the public. Because news events often evolve over
long spans of time, it can be hard for all but the most dedicated news readers to follow
a particular story, such as the current administration’s back-and-forth on DACA, or
the Russia investigation. In many cases, the information needed to provide context
for each new story is already available in a publication’s archive, but it can be time-
consuming for the journalist to compile them for the reader. Project Historian aims to
speed up this process, making it easier for the journalist to provide more context for
stories.

1



Introduction 2

1.2. Timelines in News Coverage

Current tools for creating news timelines all require substantial time investment
on the journalist’s side to research the content and manually enter it into a particular
data format. Project Historian automates this process using natural language process-
ing technologies, allowing journalists conducting background research to use news
archives more selectively. In addition, the easy timeline creation process makes it more
feasible for journalists to use news timelines more frequently to augment the context
of individual news stories.
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Background Review

While journalism-focused timeline creation tools exist, few natural language pro-
cessing algorithms are designed with journalists in mind – and no current tool com-
bines the two technologies efficiently. The following sections discuss some of the
currently existing tools that serve as reference points to Project Historian in detail.

2.1. Natural Language Processing

The key technical challenge in Project Historian is effective detection of what a
news story in a publication’s archive is about, or its “gist”. Once the main elements
of a story have been identified, it can be added to an event cluster that represents
coverage around a certain facet of the story. For example, a group of stories that all
touch on the charges against Paul Manafort in the Mueller investigation might be
grouped into a cluster on that basis.

2.1.1. TF-IDF

One of the simplest ways of determining the subject of a story is to look for
prominent and/or repeated words. For example, the TF-IDF metric weights a word
based on how frequently a word appears in a given document as compared to others
in the corpus. Although relatively simple, this method has proven highly effective at
retrieving highly relevant documents for a query [1].

3
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2.1.2. Dependency parsing

Dependency parsers makes it possible to extract the “who-did-what” structures
from sentences. For example, a dependency parse of “Trump signals support for
tougher background checks” will identify “signal” as the root verb in the sentence,
with “Trump” being the subject and “support for tougher background checks” being
the object. A classification tool can then, in the next step, perform the clustering using
the subjects, verbs and objects in each story identified by the dependency parser. In
this case, having “Trump” as the subject shows that the story will be about President
Trump. A widely used library that gives this capability is the Stanford CoreNLP

library [2], which helpfully also includes a tool for entity recognition [3], a family of
research that promises to extract named entities such as organizations and names from
texts.

While this method works in theory, in practice the parse tree of a long sentence
can be complex and yield long phrases of doubtful utility. Even “support for tougher
background checks”, which is not particularly complex, is difficult to match in a corpus
as each story will likely phrase the concept differently.

2.1.3. Topic modeling

Another family of methods, referred to as topic modeling, categorizes a collection
of articles into different “topics” and assigns different weights to each topic for every
article, where the meaning of each topic is hopefully captured by a list of words that
the algorithm identifies as “topic words” from the articles. Some examples of topic
modeling algorithms include Latent Dirichlet Allocation [4], which uses a probabilistic
model, and Latent Semantic Indexing [5], which first creates a matrix of terms that
appear in a document, and then reduces the dimensionality of the matrix to produce
topics.

2.1.4. Neural networks

For the above methods, a key challenge is that factors such as morphological forms
(single and plural forms or adjective and adverb forms of a given word, etc.) as
well as synonyms may not resolve well. For example, a news might use the word
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Figure 2.1.: A visualization of topics from a dataset consisting of PNAS, Science and Nature

articles from 1880 to 2005, where each topic is a list of words. Words with larger
font sizes are more important in a topic. LDA is used here. [5]

“Kremlin” as a shorthand for Russia; an ideal analytical tool should understand the
interchangeability between the two words.

This is where a fourth family of natural language processing methods, known
as “neural networks”, comes in. A neural network is a family of machine learning
architecture that creates a vectorized representation of words within a body of text.
Referred to as word embeddings, these vectors express the meaning of words in a
text as a set of numeric values, or vectors and have been shown to capture word
meanings very effectively [6]. For example, the vectorized distance between “king”
and “man” in word embedding is roughly equivalent to the distance between “queen”
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and “woman” [7]. Such a model has the potential to solve the word meaning linkage
issue such as the Russia/Kremlin equivalence described above.

Early work using word embeddings for journalistic purposes has shown tremen-
dous promise. For example, Roberts of Austin Cut Research Group used word embed-
dings to detect topic words in automatically transcribed political speeches, resulting
in highly thematically coherent topic word clusters [8]. Word embedding models are
thus a key component of Project Historian.

Lastly, commercial natural language processing services, such as Google’s natural
language API, are worth mentioning. Although they do perform well, the prices they
charge are out of reach for the free and open tool that Project Historian aims to be.

2.2. Visualization

Visualization is an important aspect of Project Historian, because it offers an effi-
cient and usable method of presenting the potentially large number of stories related
to a topic. Fundamentally, Project Historian aims to provide a digest of past coverage
on a topic; the point would be moot if a reader still has to plow through a list of
stories. Because more recent coverage may be more relevant to understanding current
events, a timeline representation was chosen over other visual forms, such as network
diagrams. Moreover, timelines are better understood by general readers, make Project
Historian’s dual-use case more feasible.

A broad range of timeline creation tools can be found on the web. They can be
broadly categorized into two categories: input-based and code-based.

2.2.1. Input-based timeline creation

This type of timeline creation tools requires the user to input the content that goes
into the timeline by either filling out a web form or uploading a spreadsheet with
the timeline content; the latter are frameworks that can be used to programmatically
generate timelines, usually with customization options. For Project Historian, the
former can serve as design reference points, while the latter can be used to build the
visualization component.
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Timeline JS - timelines for journalism

A good example of an input-based tool is the Timeline JS tool made by Northwest-
ern University’s Knight Lab [9], which is explicitly aimed at journalists. Timelines
made by the tool have appeared in CNN [10], the TIME Magazine [11] and Engadget [12],
among others, according to the tool’s website. The tool creates elegant slideshow-like
timelines, with a large content window and a scrolling time axis below it. To use
it, a journalist must put the elements/events into a spreadsheet manually and then
upload it to the tool. This requirement means significant time goes into the creation
of timelines, as the journalist must research and pick which story to appear in the
timeline. Perhaps as a natural result, the featured stories on the Timeline JS page either
do not cover a long time span, or appear in stories that are not time-sensitive. It’s
graphic-intensive style, however, is a good design cue that Project Historian can take.

Additional timeline tools

The other input-based timeline tools, such as TimeGraphics [13], Vizzlo [14] and
timeglider [15], work in similar ways, but are not targeted at journalism, which means
that their support for important story elements, such as images, hyperlinks and social
media posts, is limited. However, Project Historian can certainly borrow design ideas
from these tools.

2.2.2. Code-based timeline creation

One existing code-based timeline tool that looks particularly promising for Project
Historian is vis.js, a Javascript-based library that supports both programmatic
timeline creation and has a built-in GUI editing interface [16].
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Target Audience

Project Historian is mainly designed for the benefit of working journalists. Online
publications, especially those that cover breaking news, will benefit in particular.
Researchers and scholars may also find Project Historian useful for organizing and
exploring research materials.

3.1. Journalists

Project Historian can enhance journalists’ work in both reporting and presentation.
For reporting, the timelines produced by Project Historian can serve as useful back-
ground study for a journalist embarking on a new story or subject area. By looking
over past events related to a topic, journalist can better understand the motives and
stakeholders of a story thread, identify sources to reach out to or discover new story
ideas based on what is missing from existing reports. In this sense, Project Historian
function as something like a digital “clip file” that is automatically generated from a
publication’s archives.

For publishing, the timeline visualization produced by Project Historian can present
the context of news stories concisely when embedded in articles. The reader can skim
the headlines in the timeline to understand the background of an event and click
through the story links for more detailed reporting.

8
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3.2. Publications

Project Historian can benefit publications by extending the lifespan of its story
archive, resurfacing important stories (such as longform investigative pieces that broke
a story) when follow-up news break, which can bring new traffic and traction to stories
that the publication had once spent significant resources on.

Sometimes, breaking events can bring an older story back into the public’s attention
because it provides important background information on the thread of events. One
such example is a video explainer of the Syrian Civil War published by Vox in October
2015, which saw a traffic spike a month after its publication when the Paris terrorist
attack made people interested about the conflicts in Syria [17]. Project Historian can
help publications resurface important previous coverage in a similar manner, either
by an editor identifying which stories are important in a timeline leading up to a
breaking event, or by including a timeline in a breaking story and promoting stories
that received a significant traffic boost from the timeline.

3.3. Scholars

In addition to journalists, Project Historian may be of interest to scholars and
educators studying event timelines and wishing to present or analyze the media
narratives around them. For example, Project Historian can be used to learn if U.S.
media organizations are covering the Iran nuclear issue versus the North Korean
nuclear issues differently. A scholar interested in learning the political leanings of
different publications can look at the different timelines produced by stories from the
publications of interest, or what opinion articles are published on different publications
for the same timeline topic. Skimming through the stories in the timelines saves one
time digging through archives looking for relevant stories, and might prompt questions
for further investigation.



Chapter 4.

Technology Overview

4.1. Data

4.1.1. RSS

Project Historian currently uses the freely-available RSS feeds of reputable publica-
tions, including CNN, New York Times, Reuters, USA Today, Vox, Washington Post and
Wall Street Journal as the source of its corpus. The reason is that these RSS feeds are
official, publicly available and up-to-date. Users can easily expand or modify the list
of feeds by editing a text file containing the list of URLs to target.

The sources RSS feeds are downloaded via the feedly Streams API, a RESTful API
that greatly simplifies the process of retrieving RSS feed updates without altering the
feed content. New RSS feeds can be added as simply as adding the URL of the desired
RSS feed to an existing list of RSS feeds.

For the Project Historian prototype, story caching began in November 2017, al-
though there might have been interruptions since the caching began due to the system
being powered off or offline during the scheduled caching time.

4.1.2. Internal integration with a news publication

A news publication can easily configure Project Historian to use its own archive
as data source by pulling its archive into the database format that Project Historian
uses and configuring Project Historian to use this database instead of the RSS-based

10
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database, which enables Project Historian to rely on the archive of the specific publica-
tion. The database format will be included in the appendix.

4.1.3. SQLite

The cached feeds are stored in a SQLite [18] database on a web server that also
hosts Project Historian’s web interface. While each user can run their own server and
perform their own data caching, Project Historian will also have a public server for
occasional users. SQLite is chosen over more sophisticated database solutions because
of its accessibility: the database can be easily moved, no SQL server setup is necessary
and Python has built-in support for interfacing with it. One of Project Historian’s
goals is accessibility, meaning that ideally, a journalist will be able to set it up and
use it without much experience or difficulty. Relying on SQLite goes a long way to
achieving that goal.

4.2. Natural Language Processing

4.2.1. Natural Language Toolkit

The Natural Langauge Toolkit (NLTK) [19] is a Python toolkit that provides a
comprehensive list of natural language processing functions, and is the tool of choice
for basic text processing in Python (a few project examples include [20] and [21]). In
Project Historian, its use is limited to basic rule-based sentence and word tokenization
(the breaking down of text into words, sentences and phrases) as well as providing a
list of common English words (stopwords) to ignore, such as articles and prepositions.
Text from RSS feeds are first tokenized using NLTK before further processing.

4.2.2. gensim

The gensim [22] package is a Python library that provides a variety of unsuper-
vised semantic modeling methods. In Project Historian, an implementation of Google
word2vec’s phrase detection (“word2phrase”) [23] is used to detect phrases by consid-
ering the frequency of two words occurring together versus separately; if two words
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appear together often but seldom appear separately, they are likely to belong to a
phrase.

gensim is chosen for this task because it provides a Python implementation of the
word2phrase algorithm. Phrase detection is performed on the tokenized RSS text prior
to training a word embedding model.

4.2.3. FastText

FastText [24, 25]is the neural network component in Project Historian. It is a
high-performing toolkit for training a word embeddings model.

In addition to its high performance in terms of both training time and model
effectiveness, it also utilizes sub-word n-grams 1 in its training, which is especially
helpful in journalism where “new” combination words, such as “trumpcare”, are being
coined all the time. In Project Historian, FastText is used to train a word embedding
model on the tokenized and then “phrased” RSS text, in order to identify both the
content of stories and the similarity level between stories.

4.2.4. scikit-learn

The scikit-learn [26]package is a Python library that provides a wide array
of machine learning functions that are high-performing and easy to use, making
it an ideal choice for Project Historian. The main role of scikit-learn in this
project is giving TF-IDF value for words in a piece of text, providing a distance metric
between words and documents and providing a clustering algorithm for vectorized
presentations of stories. The TF-IDF values are then used as weights to obtain a
weighted average of word vectors in a story as the vector representation of that story,
which is used to cluster individual stories together for presentation in the Project
Historian interface.

1An n-gram refers to a sequence of n characters. For example, there are two tri-grams in the word
“text”, “tex” and “ext”.
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4.3. Front-End Presentation

This section describes the web-based tools used to present the interactive results
display of Project Historian.

4.3.1. Flask

Flask [27] is a lightweight Python web development framework. It is used to
serve up Project Historian’s web interface for its simplicity in both development and
deployment.

4.3.2. Materialize

Materialize [28] is a CSS framework that implements Google’s Material design.
It is chosen as the style framework for Project Historian’s web front-end because it is
easy to develop for and provides a simple, modern interface.

4.3.3. vis.js

vis.js [16] is a Javascript visualization library that enables developers to create
visually-pleasing web-based interactive tools, timelines being one of them. The final
visualization of Project Historian is written using vis.js and the visualization takes
the form of code that can be easily copied and pasted into online stories.
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Figure 4.1.: The interface of Project Historian runs on a server powered by Flask. The inter-
face is built using Materialize.



Chapter 5.

System Architecture

Project Historian consists of two overall functional units: the offline unit, which
handles data collection and model training; and the online unit, which handles user
queries on-demand.

5.1. Offline Unit

The offline unit of Project Historian handles the collection of story backlog for
analysis, as well as the time-consuming part of the project’s required natural language
processing. It is updated on a daily basis to incorporate the latest news events into its
analysis in a reasonably timely fashion, processing the current volume of data in less
than a day.

5.1.1. Backlog collection

In its current form, backlog collection is performed using RSS caching. A list of RSS
feeds is queried and cached into a database on a daily schedule. The variety of RSS
sources not only ensures that Project Historian covers a reasonable breadth of events,
but also makes a large enough corpus for natural language processing techniques to
work well. Currently cached RSS feeds include sections of CNN, New York Times, USA

Today, Washington Post, Vox and Wall Street Journal.

If Project Historian is eventually adapted to be used internally for a publication,
the publication will have the option to switch the data source to its own backlog. A

15
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Figure 5.1.: A diagram of Project Historian’s structure.
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script can be added to convert the publication’s backlog into the database format that
Project Historian uses, which then enables Project Historian to utilize the publication’s
backlog for its data source. While this approach would reduce the variety of news
sources, it would more than make up for it in the richness of the news corpus for use
in the next steps of Project Historian.

5.1.2. Preprocessing

After the caching step, a preprocessing step is run on the full text of each feed item,
including the title, the text summary and the text content. The preprocessed text is
then stored in the database to be used as the text for clustering later.

The preprocessing step begins with a tokenization step, which splits the text into
sentences and then sentences into words. This step is facilitated by the NLTK [19]
library.

A simple data-driven phrase detection algorithm, described in the work by Mikolov
et al. [23], is run over the tokenized corpus twice with different thresholds to detect
common word collocations. An initial run with a high threshold aims to find names
(e.g. “bob corker”, “mike pence”) while a second run with a lower threshold aims to
find other phrases (e.g. “capitol hill”, “white house”, “russia investigation”) as well as
phrases formed from names detected in the previous run (e.g. “senator bob corker”).
The phrase detection step uses an implementation of the algorithm in the gensim
package. The detected phrases are turned into single tokens by replacing spaces with
underscores and treating them as distinct words in later steps.

5.1.3. Model training

A skipgram word embedding model, which learns word representations by having
a neural network predict a word’s context words (i.e. words that appear within a
short window around the targeted word), is trained on the entire story backlog on a
daily basis, using the FastText [24, 25] package, after the caching and preprocessing
processes of the day is complete. This word embedding model is later used in event
clustering.

While many tried-and-true pre-trained word embeddings, such as word2vec

embeddings and GloVe embeddings, can be easily found on the web, training a
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custom model is chosen over using a pre-trained word embedding model for the
following reasons:

1. Timeliness. Pre-trained word embeddings are commonly trained on older data.
The Google word2vec pre-trained embeddings was released in 2013; the GloVe
embeddings were released in 2014. While these models are applicable to gen-
eral NLP applications, news analysis presents unique challenges in terms of a
constantly evolving vocabulary of entities. Neither models would have an idea
about, for example, how George Papadopoulos is related to Russians, or even
how Trump is closely related to the presidency of the United States. Project
Historian’s FastText model, however, captures both quite well.

2. Domain specificity. Pre-trained word embeddings are trained on a much broader
range of topics than would be necessary for news event clustering. Project Histo-
rian does not need to know, for example, the capitol of every country in the world
(an example often used to demonstrate the effectiveness of word embeddings).
Such lack of specificity would bring with it a much larger vocabulary than needed
and as a result, unnecessary performance penalty.

3. Performance and resource issues. Project Historian is designed to be run on a
web server with limited memory. Larger pre-trained word embedding models,
due to their large vocabulary, require a large amount of memory, which can be
cost-prohibitive to obtain. Considering that much of this large vocabulary is
irrelevant to Project Historian, running a lightweight model trained on a relevant
corpus is a better choice.

4. Corpus quality. Journalism stories are, in general, hand-edited, high quality
writing. Therefore, not only does it capture a large amount of relevant information
in a relatively compact corpus (compared to, for example, social media), it also
requires much less concern about common issues of generic web-based corpora
such as inaccurate information and spelling mistakes. As a result, despite being
trained on a much smaller corpus, Project Historian’s FastText model provides
good enough usability, at least for Project Historian’s use case.

Beyond this, FastText also has the specific advantage of providing word vectors
for any word or phrase that is not in the training corpus by using sub-word n-grams, a
useful feature for newly-coined terms such as “trumpcare”.
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In its current implementation, Project Historian takes around 20 minutes each day
to train a model that is around 1GB in size.

The model is tuned via its ability to find high-quality related words to a hand-
selected set of test words based on recent events. For example, a high-quality model
should be able to find that “moscow” and “kremlin” are highly related to “russia”,
as journalists often use these words interchangeably to refer to Russia in their new
stories.

5.2. Online Unit

The online unit responds to user queries and generates event clusters for the user.
With the trained model in place, the rest of the natural language processing happens
here, in the following steps.

5.2.1. Query handling

A query starts with a user inputting query keywords – such as recent news topics –
into the system. Project Historian first expands the keywords by finding closely related
words in the FastText embedding model (using cosine similarity1) , and then runs a
query in the database by matching the expanded list of keywords in the preprocessed
corpus.

For example, if a user inputs “trump”, Project Historian will find closely related
words such as “president” and “white house”, and consider an entry a hit if it contains
any of the three words/phrases.

If multiple keywords are entered, Project Historian will expand each of them.
In the database query, each keyword will be connected with its alternatives using
a OR relation, while each group of expanded keywords will be connected with an
AND relation. For example, if “Trump” and “Russia” are entered and the system
offers up “White House” and “President” for “Trump” and “Kremlin”, “Moscow” for
“Russia”, the query will look for stories that contain at least one word among “White

1Cosine similarity measures similarity between two vectors by considering the cosine value of the
“angle” they form in the vector space. The larger the value, the smaller the angle and the more
similar the two vectors are. [29]
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House”, “President” and “Trump” and any one word among “Kremlin”, “Moscow”
and “Russia”.

5.2.2. Forming story representations

Once the query returns a list of stories, a TF-IDF transformation is run over the
tokenized returned corpus to determine the importance of each word/phrase within
story. The TF-IDF values are then used as weights for the importance of each word
in the text after some transformation, and a weighted average of all word vectors are
taken to form a vectorized presentation of the story2.

While more sophisticated approaches for obtaining salient components of a docu-
ment exist, such as dependency parsing or named entity recognition (NER), TF-IDF is
chosen for the following reasons:

1. Simplicity and speed. TF-IDF calculation is much faster than any deeper-level
text processing, which is crucial for the online portion of Project Historian as the
user will be waiting for the results of their query.

2. Adaptability. Many parsing or NER algorithms are based on statistical results
or inferred rules from existing corpora, which limits their ability to adapt to
new concepts, a particularly common occurrence when dealing with up-to-date
news, since statistics or rules suitable for a new name or organization might
not be available. TF-IDF, however, does not concern itself with what is inside a
token. This lack of insight conversely makes it very adaptable to new entities and
concepts.

3. Quantifiability. Even if parsing or NER correctly identifies entities in a document,
a salience value would still be preferable for each entity discovered. TF-IDF
inherently provides such values.

2For each story, the TF-IDF values of each token are thresholded and used as weights for calculating
the story vector. The rationale behind this approach is to extract the salient information from each
story with TF-IDF-based weights.
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5.2.3. Story clustering

Once a vectorized representation of each story has been obtained, a clustering
algorithm can be run to cluster entities into events.

An adaptive clustering algorithm, based on the K-Means algorithm, is used for this
step. The algorithm repeatedly split each cluster until every cluster meets a quality
standard. The quality of a cluster is measured by the average distance of each node in
a cluster to the cluster’s centroid. The pseudocode for the algorithm can be found in
the technical appendix.

K-Means, which clusters by iteratively choosing cluster centers based on the previ-
ous iteration of clustering results (the centroids of the previous iteration of clusters are
used as the base for the next iteration, until the centroids stop changing), is chosen as
the base for this algorithm because it provides an intuitive measure of cluster qualities
by having a centroid for each cluster to measure distance against.



Chapter 6.

Deployment and Usage

Project Historian is designed to be highly lightweight and portable. This chapter
discusses its deployment and usage.

6.1. Deployment

Project Historian is designed with the newsroom in mind. A reporter with a
desktop computer can set it up and keep it running if she wants to; a newsroom that
finds this tool useful can lease a virtual server from a cloud computing provider or set
up a local machine to host it; and Project Historian will have a public server for the
occasional user.

6.1.1. Requirements

Project Historian has been tested to work on a virtual server with 2 CPU cores,
4GB of memory and 30GB of storage, which is easily satisfied by modern laptops. A
persistent power and network connection is preferred, however, as Project Historian’s
offline part involves scheduled tasks that requires Internet access.

6.1.2. Set-up

Project Historian’s set-up process involves four steps outlined below.

1. Download and extract the code in a user-chosen folder.
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2. Install the required Python packages.

3. Schedule cron jobs to run the RSS caching, preprocessing and model training on
a daily basis.

4. Run the server using a provided script. Project Historian can now be used from
the web interface, although it will take some time for Project Historian to cache
enough data to be useful.

The actual code and instructions for the above can be found in the attached reposi-
tory.

6.2. Usage

This section will demonstrate the usage of Project Historian with a sample query
about the events in the Russia investigation.

6.2.1. Invoking the interface

Project Historian runs on a web interface that is hosted on a server. To access a
locally running server, the user can open their browser and go to http://localhost:5000,
where they will be able to see Project HistorianâĂŹs user interface.

6.2.2. Making a query

The user makes a query by typing into the search box. In this case, the user can
type “trump, russia”, and then click the “Search” link below.

6.2.3. Examining the expanded keywords

Project Historian will return a list of keywords that it thinks will be useful in
expanding the search. For example, it suggests keywords as shown in the image
below.
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Figure 6.1.: Project Historian’s web interface.

Each expanded keywords can be dismissed by clicking the “x” button next to it if
the user finds it irrelevant. In this case, for example, the user can take out “donald”
and “magoo”, since the other keywords have captured the meaning well enough.

After cleaning up the expanded keywords, the user can click on “continue” to
make the final query to Project Historian.

6.2.4. Viewing and editing the timeline data

After a few seconds to a few minutes of processing, during which a progress bar
will be shown, Project Historian will show the initial timeline data.

Each event can be expanded to show the stories within by clicking on the headline.

The user will be able to select the events and stories that go into the final output
with the checkboxes to the left of each entry. By default, all output is selected. The
user will also be able to merge clusters by dragging one cluster on top of another, and
rename clusters using an input field visible in each expanded cluster.
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Figure 6.2.: Making a query in Project Historian.

6.2.5. Making the final timeline

After the user finishes refining the timeline’s output, she can click “make the
timeline” at the bottom of the section to construct the final timeline, which is more
visually straightforward than the initial timeline data.

Each section can be expanded to reveal a horizontal timeline of the stories within
the section.

If the user decides to further refine the timeline output, she can go back to the
initial results and continue editing there. Once she finishes, the “make the timeline”
option will generate a new timeline with the latest edits.

6.2.6. Exporting the result

Once the final timeline is generated, the user has the option to export the graphics
as well as the data.
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Figure 6.3.: Managing related keywords in Project Historian.

Exporting the graphics

The user can export the interactive timeline into an HTML file, which can be opened
directly to view the final timeline by itself. The code contained in the HTML file can
also be embedded into an online news story as an interactive element.

Exporting the data in JSON format

The user also has the option to export data in JSON (JavaScript Object Notation)
format, a machine-readable data format that facilitates easy custom visualization via
Javascript. The data is downloaded as a text file that contains the encoded data.

Exporting the data as Excel

The user can also export the data as an Excel spreadsheet for a familiar reading
experience. Each event cluster is organized as worksheet that contains the stories
within.
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Figure 6.4.: Initial timeline data in Project Historian

Figure 6.5.: Editing timeline data in Project Historian.
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Figure 6.6.: The output timeline in Project Historian.

Figure 6.7.: An expanded event timeline in Project Historian.
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Figure 6.8.: Export options in Project Historian.

Figure 6.9.: Exporting the timeline as interactive graphics.



Chapter 7.

Conclusion

Project Historian presents a unique solution to a common research and context
problem in journalism today. By breaking down news coverage into event timelines, it
makes a constant stream of news much more digestable for journalists, readers and
scholars alike. The project’s extensive use of unsupervised learning techniques means
that it is easily adapted to any source of news content that can provide news story text,
making it easy for interested publications to integrate. It also ensures that any data
it is based on is held to the journalistic standards of the data’s sources. In its current
implementation, which is based on RSS feeds of reputable publications, it has already
achieved promising performance. This performance, will only improve with richer
data sources and deeper archives.

The most significant aspect of Project Historian is the overall pipeline for timeline
retrieval, rather than the specific technology used. In order to achieve acceptable re-
sponsiveness with limited resource during its development, Project Historian currently
chooses speed over sophistication for each stage of it natural language processing.
This trade-off covers problems such as phrase detection, word representation model
training, salient information extraction and the clustering algorithm. Future research
to improve Project Historian can concentrate on optimizing each of these stages to
improve the performance of the overall package, and therefore make it a more valuable
tool for journalists, publications and scholars.
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Appendix A.

Technical Appendix

A.1. Database format for Project Historian

Project Historian’s main database uses the table format as shown in Table A.1 to
store RSS information.

The columns in use are title, content, summary, feedname, canonical,
published and preprocessed. preprocessed is derived from title, content
and summary, which come from the RSS data.

If a news organization hopes to integrate Project Historian internally, it can replace
the RSS database with a database based on its archive and populate the columns in use
mentioned above except for preprocessed, which is generated by Project Historian.

A.2. Clustering algorithm

Project Historian uses the following clustering algorithm to perform event cluster-
ing.
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Column name Data Type Description

id TEXT A unique indentifier for each entry
title TEXT Title of each feed entry
feedname TEXT The display name for the RSS feed (e.g. WSJ Business)
content TEXT The content of the feed entry, usually an article snippet
summary TEXT The summary of the feed entry
author TEXT The author name for the feed entry
published INTEGER A UNIX timestamp of the feed entry’s publication time
visual TEXT When present, the visual assets (e.g. thumbnails) asso-

ciated with the feed entry in JSON format
engagement INTEGER An indicator of the popularity of the entry from the

Feedly Streams API
canonical TEXT Link to the feed entry’s corresponding article
alternate TEXT Alternate links to the feed entry’s corresponding article

in JSON format
enclosure TEXT A collection of media object links (e.g. video, audio) of

the feed entry in JSON format
cachedate TEXT The latest date on which the item is cached
preprocessed TEXT Preprocessed text (after tokenization and phrase detec-

tion steps) including the title, summary and content.

Table A.1.: The database format for Project Historian.
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Data: A list of vectors {vi}, each representing a story
Result: A list of clusters {Ci}, with each cluster including a list of indices in {vi}.
let Q be an empty queue;
let C be an empty set;
enqueue {1, 2, . . . , n} in Q;
while Q is not empty do

dequeue Ct from Q;
if Ct is a high-quality cluster then

add Ct to C;
continue;

else
use K-Means to split Ct into two clusters, Ct1 and Ct2;
enqueue Ct1 in Q;
enqueue Ct2 in Q;

end
end
return C

Algorithm 1: The clustering algorithm in Project Historian
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